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Pyrimidines are an important class of heteroaromatic compounds
and have widespread applications from pharmaceuticals to materi-
als.1 A number of pyrimidines are known to have antimicrobial
and antitumor activities, and some of them are presently in use.
The electron-deficient nature of pyrimidines can provide highly
electron-accepting ability to conjugated polymers.2 In addition,
conjugated molecules which have a pyrimidine core as the key unit
have received much attention recently, and they are prospective
candidates for light-emitting devices.3 Pyrimidine also has interest-
ing characteristics as a ligand for a variety of transition metals to
construct supramolecules.4

Due to these unique properties, development of synthetic methods
which enable rapid access to pyrimidines is desirable. In most cases,
synthesis of pyrimidine is based on classical condensation reactions
between C-C-C and N-C-N components5 or cross-coupling
reactions.6 Herein we wish to report a novel construction of a
pyrimidine core with incorporation of various alkyl and aryl groups
from the corresponding Grignard reagents. The reaction ofR,R-
dibromo oxime ethers with a variety of Grignard reagents efficiently
provides 2,4,6-trisubstituted pyrimidines.

R,R-Dibromo oxime ethers are easily prepared from the corre-
sponding R,R-dibromo ketones upon treatment withO-methyl
hydroxylamine hydrochloride in methanol.R,R-Dibromo ketones
are readily available from the reaction of esters with dibromo-
methyllithium via Kowalski’s protocol7 or oxidation of dibromo-
methyl carbinols with PCC (Scheme 1).8

To a THF solution ofR,R-dibromoacetophenoneO-methyloxime
(1a, Z/E ) 84/16) was added 1.1 equiv of butylmagnesium bromide
in THF dropwise at 0°C, and the color of the reaction mixture
turned deep purple. The mixture was stirred for 1 h. Aqueous
workup and purification afforded 2-butyl-4,6-diphenylpyrimidine
(2a) in 25% yield (Scheme 2). It then proved to be necessary to
employ more than 2.0 equiv of the Grignard reagent to improve
the yield. After optimization, treatment of1a with 2.2 equiv of
n-BuMgBr at-42 °C and warming up the reaction mixture to room
temperature furnished2a in 74% yield.

We examined various Grignard reagents to be incorporated in
the pyrimidine core. Not only alkyl groups but also aryl and vinyl
groups can be introduced. Table 1 summarizes the results. Several
characteristics of this reaction are noteworthy.p-Bromophenyl
derivative1e provides the corresponding pyrimidine2k without
reduction of bromide. Bromide2k is a useful compound for the
synthesis of highly conjugated molecules via a Sonogashira-
coupling reaction (Scheme 3). Usingp-bromophenylmagnesium
bromide,p-bromophenyl group can be introduced at the 2-position
of the pyrimidine core providing2g. This protocol also enables

the synthesis of a heteroaromatic-substituted pyrimidine. Difu-
rylpyrimidine 2l can be prepared from1f.

Interestingly, the use of allylic magnesium compounds instead
of alkyl or aryl Grignard reagents provided none of the correspond-
ing pyrimidines. Instead, the reaction afforded diallylated aziridines
3a or 3b in good yields (Scheme 4).

To obtain mechanistic insights, we carried out the reaction at
-98 °C (Scheme 5). Quenching the reaction at-98 °C provided
R-bromo oxime ether4a exclusively. This result indicates that
bromine-magnesium exchange to furnish carbenoid5 is the initial
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Table 1. Synthesis of Pyrimidines from Dibromo Oxime Ethersa

a Reaction conditions: Substrates (1.0 mmol), Grignard reagent (2.2
equiv), THF (5 mL),-42 °C then warming the reaction mixture up to room
temperature.
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stage.9 Warming this reaction mixture yielded pyrimidine2a. Even
at -78 °C, no other intermediary products than4a were isolated.

We propose a plausible mechanism involving an azirine inter-
mediate as depicted in Scheme 6. Bromine-magnesium exchange
affords carbenoid5, which is then alkylated at theR-position with
the Grignard reagent to furnish6.10 R-Magnesiated oxime ether6
undergoes Neber-type cyclization11 to provide highly reactive azirine
7.12 The reaction of azirine with5 affords8, which yields diimine
9 via ring opening. An electrocyclization of9 provides a pyrimidine
skeleton10,13 which is finally converted to pyrimidine2 upon
elimination of methanol. Although the present reaction pathway is
speculative, the formation of allylated aziridine3 from the reaction
of 1 with allylmagnesium chloride can support the presence of
azirine7 as the intermediate.14

In conclusion, we have achieved a facile synthesis of pyrimidines
from R,R-dibromo oxime ethers with a variety of Grignard reagents.
The alkyl or aryl group of a Grignard reagent is introduced at the
2-position of the pyrimidine core efficiently.
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